178 research outputs found

    A petrological, mineralogical and chemical analysis of the lunar mare basalt meteorites LaPaz Icefield 02205, 02224 and 02226

    Get PDF
    LaPaz Icefield (LAP) 02205, 02226, and 02224 are paired stones of a crystalline basaltic lunar meteorite with a low-Ti (3.21–3.43% TiO2) low-Al (9.93–10.45% Al2O3), and low-K (0.11–0.12% K2O) composition. They consist mainly of zoned pyroxene and plagioclase grains, with minor ilmenite, spinel, and mesostasis regions. Large, possibly xenocrystic, forsteritic olivine grains (<3% by mode) contain small trapped multiphase melt inclusions. Accessory mineral and mesostasis composition shows that the samples have experienced residual melt crystallization with silica oversaturation and late-stage liquid immiscibility. Our section of LAP 02224 has a vesicular fusion crust, implying that it was at one time located sufficiently close to the lunar surface environment to have accumulated solar-wind-implanted gases. The stones have a comparable major element composition and petrography to low-Ti, low-Al basalts collected at the Apollos 12 and 15 landing sites. However, the LAP stones also have an enriched REE bulk composition and are more ferroan (Mg numbers in the range of 31 to 35) than similar Apollo samples, suggesting that they represent members of a previously unsampled fractionated mare basalt suite that crystallized from a relatively evolved lunar melt

    Manganese-rich olivines: Identification from spectral reflectance properties

    Get PDF
    Reflectance spectra of manganese-rich olivines were examined to determine which spectral features allow these minerals to be distinguished from forsteritic-fayalitic olivines. The results indicate that manganese-rich olivines can be distinguished on the following bases: Fe2+ M2 absorption band depths are reduced relative to Fe2+ Ml depths, the wavelength position of the Fe2+M2 absorption band is shifted to longer wavelengths(>1.08 μm) for olivines containing between ~10 and 70 mol % Mn2Si04 , and the presence of an isolated Mn2+ transition band near 0.4 μm . The absence of Fe2+ spin forbidden features in the visible wavelength region is not a reliable method for identifying manganese-rich olivines.This work was supported by grants-in-aid of research from the Geological Society of America and Sigma Xi, The Scientific Research Society.This work was supported by grants-in-aid of research from the Geological Society of America and Sigma Xi, The Scientific Research Societyhttps://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JE0249

    Inference on the Nature and the Mass of Earth's Late Veneer from Noble Metals and Gases

    Get PDF
    Noble metals and gases are very sensitive to the late accretion to the Earth of asteroids and comets. We present mass balance arguments based on these elements that indicate that 0.7E22-2.7E22 kg of extraterrestrial bodies struck the Earth after core formation and that comets comprised less than 1E-5 by mass of the impacting population. These results imply that the dynamics of asteroids and comets changed drastically with time and that biogenic elements and prebiotic molecules were not delivered to the Earth by comets but rather by carbonaceous asteroids.Comment: 10 pages, 2 figures, 1 table, submitted to JG

    Lunar meteorite regolith breccias: an in situ study of impact melt composition using LA-ICP-MS with implications for the composition of the lunar crust

    Get PDF
    Dar al Gani (DaG) 400, Meteorite Hills (MET) 01210, Pecora Escarpment (PCA) 02007, and MacAlpine Hills (MAC) 88104/88105 are lunar regolith breccia meteorites that provide sampling of the lunar surface from regions of the Moon that were not visited by the US Apollo or Soviet Luna sample return missions. They contain a heterogeneous clast population from a range of typical lunar lithologies. DaG 400, PCA 02007, and MAC 88104/88105 are primarily feldspathic in nature, and MET 01210 is composed of mare basalt material mixed with a lesser amount of feldspathic material. Here we present a compositional study of the impact melt and impact melt breccia clast population (i.e., clasts that were generated in impact cratering melting processes) within these meteorites using in situ electron microprobe and LA-ICP-MS techniques. Results show that all of the meteorites are dominated by impact lithologies that are relatively ferroan (Mg#10), and have low incompatible trace element (ITE) concentrations (i.e., typically 10 ppm Sm), High Magnesium Suite (typically >70 Mg#) or High Alkali Suite (high ITEs, Sc/Sm ratios <2) target rocks. Instead the meteorite mafic melts are more ferroan, KREEP-poor and Sc-rich, and represent mixing between feldspathic lithologies and low-Ti or very low-Ti (VLT) basalts. As PCA 02007 and MAC 88104/05 were likely sourced from the Outer-Feldspathic Highlands Terrane our findings suggest that these predominantly feldspathic regions commonly contain a VLT to low-Ti basalt contribution
    corecore